Exam of 23 December 2024

The duration of the exam is of 4 hours. Notes and books are allowed during the exam but electronic devices is not allowed.

The Exam is composed of six parts and each part contains several questions. In part I the questions are pairwise independent. In the other parts it is possible to use the statement of question (i) to solve question (i + k).

Notation. B(x, r) denotes the open ball of center x and radius r > 0 in a metric space. Any absolute value on a field K is intended as non-trivial. If not otherwise specified the letter p denotes a prime number. When clear from the context i denotes a primitive 4-th root of unity (the usual imaginary unit).

Part I: Quick questions

- (1) For any prime p find an element $\alpha_p \notin \mathbb{Q}_p$ (lying in some extension of \mathbb{Q}_p) which is algebraic over \mathbb{Q}_p .
- (2) Give an example of a Dedekind domain \mathcal{O} with the following properties: (i) It is local (i.e. it contains only one maximal ideal). (ii) Its residue field has characteristic 0.
- (3) Let K be a field. Determine whether $K[T^2, T^3]$ is a Dedekind domain.
- (4) Determine whether the following subset of \mathbb{R}^3 is a complete lattice:

$$L = \{ (x, y, z) \in \mathbb{Z}^3 : 2x + 3y + 4z \equiv 0 \pmod{7} \}.$$

- (5) Let $(K, |\cdot|)$ a non-archimeden field, and let $x, y \in K$. Sow that if $y \in B(x, r)$ then B(y, r) = B(x, r) for any r > 0. Deduce that the open balls of K are also closed subsets of K.
- (6) Give an explicit example of a non-archimedean (and non-trivial) valued field $(K, |\cdot|)$ which is not a discrete valuation field.

Part II: A dynamical system in \mathbb{Z}_p

Let p be a prime number. Consider the function $f: \mathbb{Z}_p \to \mathbb{Z}_p$ defined by $f(x) = x^p$.

- (1) Show that f is continuous.
- (2) Describe the set $f(p^n \mathbb{Z}_p)$ for any $n \ge 1$.
- (3) Is f is a contraction¹?
- (4) Find all the fixed points of f.
- (5) Show that $a \equiv b \pmod{p^k}$ implies $a^p \equiv b^p \pmod{p^{k+1}}$ for any $a, b \in \mathbb{Z}$ and any k > 0.
- (6) Show that the sequence $\{a^{p^n}\}_{n\in\mathbb{N}}$ converges in \mathbb{Z}_p for any $a\in\mathbb{Z}$.
- (7) Show that $\{a^{p^n}\}_{n\in\mathbb{N}}$ converges to a fixed point of f for any $a\in\mathbb{Z}$.
- (8) Characterize (depending on $a \in \mathbb{Z}$) the fixed point of f that is the limit of $\{a^{p^n}\}_{n \in \mathbb{N}}$.

Part III: Non cyclic Galois extensions

Let L/K be a finite Galois extension of number fields such that Gal(L/K) is not a cyclic group.

- (1) Show that any nonsplit² prime ideal of \mathcal{O}_K is ramified in *L*. [*Hint: the Galois group of an extension of finite fields is cyclic...*]
- (2) Deduce that K has at most finitely many nonsplit ideals.

Part IV: Arbitrary groups of unit

- (1) Show that if a number field K contains a root of unity $\zeta \neq \pm 1$ then it doesn't admit real embeddings in \mathbb{C} .
- (2) Show that there is no number field K such that $\mathcal{O}_K^{\times} \cong \mathbb{Z}/50\mathbb{Z} \times \mathbb{Z}^{10}$.
- (3) Show that a number field K such that $\mathcal{O}_K^{\times} \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}$ must satisfy $[K:\mathbb{Q}] = 4$
- (4) There are some number fields K such that $i \in K$ and $[K : \mathbb{Q}] = 4$, but $\mathcal{O}_K^{\times} \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}$. Find such fields.

¹Let (X, d) a metric space. Recall that a contraction is a map $g: X \to X$ such that $d(g(x), g(y)) \leq Cd(x, y)$ for a real constant $C \in [0, 1[$ and any $x, y \in X$.

²Recall that $\mathfrak{p} \subset \mathcal{O}_K$ is called nonsplit if only one prime ideal of \mathcal{O}_L lies over \mathfrak{p}

(5) Give an explicit example of number a field K such that $\mathcal{O}_K^{\times} \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}$.

Part V: On the Haar mesure on local fields

Disclaimer: this part requires some very basic knowledge of measure theory.

Let K be a local field with a discrete valuation v, a residue field $k = \mathcal{O}/\mathfrak{p}$ of cardinality $q < \infty$ and such that

$$|x|_v := q^{-v(x)} \quad \forall x \in K^{\times}$$

Since K is a locally compact (additive) group, it admits a Haar measure μ . We know that such measure satisfies the following relation for any measurable set S and any $x \in K^{\times}$:

$$\mu(xS) = |x|_v \mu(S) \,.$$

Show that $\mu(\mathcal{O}^{\times}) = (1 - q^{-1})\mu(\mathcal{O}).$

Part VI: Conductor and factorization

Let $K = \mathbb{Q}(\sqrt{d})$ with d square free integer and let \mathfrak{F} be the conductor of $\mathbb{Z}[\sqrt{d}]$.

- (1) Show that $\mathfrak{F} = \mathcal{O}_K$ if $d \not\equiv 1 \pmod{4}$, and $\mathfrak{F} = 2\mathcal{O}_K$ otherwise.
- (2) Find the factorizations of the primes 3 and 5 in $K = \mathbb{Q}(\sqrt{-29})$.